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Abstract—Joint dispersion-matrix and constellation optimiza-
tion algorithm is proposed, which is invoked for the recent
space-time shift keying (STSK) scheme. More specifically, the
theoretical gradients of the DCMC capacity with respect to both
a dispersion-matrix set and to the modem constellations are de-
rived, which allows a substantial reduction in the computational
complexity required for maximizing the system’s capacity. Fur-
thermore, we also conceive a near-capacity irregular-precoded
STSK (IR-PSTSK) architecture, which is designed with the aid
of extrinsic information transfer (EXIT) charts, while invoking
STSK subcodes, which are optimized by using the proposed
algorithm.

Index Terms—Constellation, dispersion matrix, EXIT chart,
irregular codes, iterative detection, MIMO, space-time shift
keying.

I. INTRODUCTION

The recent space-time coding (STC) concept of space-
time shift keying (STSK) [1–3] allows us to strike a flexible
rate-versus-diversity tradeoff [4] in the context of multiple-
input multiple-output (MIMO) schemes, while benefiting from
a low-complexity near-optimal detector based on matched
filtering [5]. More specifically, the STSK scheme relies on the
unique encoding philosophy of activating one out of Q space-
time dispersion matrices during each block transmission. The
activated dispersion matrix then spreads the classic complex-
valued symbols of phase-shift keying (PSK) or quadrature
amplitude modulation (QAM). Hence, the basic design param-
eters of the STSK’s transmitter are constituted by a dispersion-
matrix set and complex-valued constellations. As mentioned in
[2] and the references therein, the STSK family, including the
space-shift keying (SSK) [6] and the spatial modulation (SM)
schemes [7], was shown to outperform other classic MIMO
arrangements in many practical scenarios.
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It was also shown in [5] that surprisingly the star-QAM
aided STSK scheme outperforms its square-QAM aided coun-
terpart, which is the other way round in classic modems.
This is due to the fact that the STSK scheme’s achievable
performance is affected not only by the minimum distance of
the constellations employed, but also by their absolute values,
as clarified in [5]. However, the constellations’ optimization
for the STSK scheme is still an open issue.

A number of dispersion-matrix optimization algorithms
have been developed both for linear dispersion codes (LDCs)
[8–10] and for STSK [1, 11] under the assumption of employ-
ing specific constellations. For example, in [9] a dispersion-
matrix set was designed for the uncoded LDC scheme, by
minimizing its pairwise-error probability (PEP) with the aid
of the gradient descent method. The prevalent approach is
that of maximizing the discrete-input continuous-output mem-
oryless channel’s (DCMC) capacity [12], but the associated
computational cost may become excessive, especially for high-
throughput or high-diversity LDC and STSK arrangements
[1, 10, 13].1 More importantly, although it is vital to jointly
optimize both the dispersion matrix set and the modem con-
stellations for the sake of maximizing the achievable rate,
previous studies only optimized a set of dispersion matrices.

By contrast, in order to attain both a near-capacity per-
formance as well as a low decoding complexity, the turbo
principle [14] was extended by invoking multiple concate-
nated codes, which allows us to replace the high-complexity
optimum non-iterative detector by lower-complexity iterative
detection. More specifically, in [17] a recursive inner code
was invoked for the sake of maximizing the interleaver gain
and for avoiding the formation of a bit-error ratio (BER)
floor. In order to further reduce the discrepancy between the
achievable performance and the capacity bound, the irregular
channel codes of [18] were designed with the aid of extrinsic
information transfer (EXIT) charts. More recently, in [19, 20]
irregular inner- and outer codes were proposed in order to
further reduce the area gap in EXIT chart between the inner-
code’s and outer-code’s EXIT curves, since this area was

1In order to provide further insights, DCMC capacity provides a tight
BER performance bound in the context of near-capacity iteratively-decoded
systems, employing a powerful channel code, such as turbo [14, 15] and low-
density parity check (LDPC) codes [16], as documented in [1, 13]. On the
other hand, the above-mentioned PEP or BER minimization criterion, which
is developed for uncoded systems, no more serves as an exact performance
metric. Hence, it can be said that DCMC capacity based system optimization
is especially useful for near-capacity transceivers, which can be operated in
the low SNR regime.
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shown to be proportional to the distance from capacity.
Against this back-cloth, the novel contributions of this

paper are two-fold:

• We propose a joint dispersion-matrix and constellation
optimization algorithm, where the simplified conjugate
gradient (SCG) algorithm is invoked for maximizing the
DCMC capacity. In order to facilitate this in a practical
manner, the theoretical gradients of the DCMC capacity
with respect to both a dispersion-matrix set and to the
modem constellations are derived, which results in a
substantial reduction of the computational complexity
required for the system’s optimization.2

• Another new contribution is that a set of the optimized
STSK component codes is then invoked for creating a
near-capacity irregular precoded STSK (IR-PSTSK) ar-
chitecture, which is designed with the aid of EXIT charts,
while making the best use of the maximized-capacity
STSK code sets. This enables us to attain a near-capacity
performance over a wide range of signal-to-noise ratios
(SNR).

The remainder of this paper is organized as follows. Section
II reviews the STSK scheme’s model, the DCMC capacity
and the error-bound. In Section III we propose the novel
dispersion-matrix and constellation optimization scheme. Sec-
tion IV provides EXIT-chart-aided design guidelines for our
irregular-precoded STSK architecture, while the STSK scheme
designed by the proposed optimization scheme is characterized
in Section V. Finally, Section VI concludes this paper.

II. REVIEW OF SPACE-TIME SHIFT KEYING

In Sections II-A, II-B and II-C, we briefly review the
STSK scheme’s model as well as its capacity- and BER-limits,
respectively, noting that their further detailed descriptions can
be found for example in [1, 2].

A. System Model

Consider the M -antenna-assisted STSK transmitter, hav-
ing Q preassigned space-time dispersion matrices Aq ∈
CM×T (q = 1, · · · , Q) as well as the L-point complex-valued
constellations sl (l = 1, · · · ,L). During each block interval,
B = log2(Q · L) = log2Q + log2 L information bits are
input to the transmitter, where a single one out of the Q
dispersion matrices Aq is activated according to the log2Q
input bits, while the log2 L input bits are mapped to a symbol
sl. Finally, the transmitter arrives at the space-time matrix
Sq,l = slAq ∈ CM×T , which is transmitted from each of the
M transmit antenna elements (AEs) over T symbol durations.

The signals Y ∈ CN×T received by the N receive AEs,
may be expressed as

Y = HSq.l +V, (1)

2In this paper we mainly focus our attention on a new optimization
algorithm of the STSK family, which is invoked in the context of near-
capacity channel-encoded scenarios. For readers who are interested in the
STSK scheme’s performance comparisons with diverse other classic MIMO
schemes, please refer to [2] and references therein.

where H ∈ CN×M represents the Rayleigh fading chan-
nel coefficients, modeled by the complex-valued Gaussian
distribution of CN (0, 1), while V ∈ CN×T represents the
associated noise components, obeying the complex-valued
Gaussian distributions of CN (0, N0), with N0 being noise
variance. By carrying out the vector-stacking operation vec(•)
at both sides of Eq. (1), we arrive at a more tractable vectorial
signal model as follows:

Ȳ = H̄χKq.l + V̄, (2)

where we have

Ȳ = vec(Y) ∈ CNT×1, (3)
V̄ = vec(V) ∈ CNT×1, (4)
H̄ = I⊗H ∈ CNT×MT , (5)
χ = [vec(A1), · · · , vec(AQ)] ∈ CMT×Q, (6)

and

Kq,l = [0, · · · , 0, sl , 0, · · · , 0]T ∈ CQ×1. (7)
↑

qth element

Furthermore, ⊗ denotes the Kronecker product and I is the
identity matrix, while χ is referred to as the dispersion
character matrix (DCM) [13], which characterizes the set
of dispersion matrices employed. In order to maintain a
transmission power per symbol duration which is unity, the
following constraint is imposed on the DCM:

[χ]
H
(q) [χ](q) = T (q = 1, · · · , Q), (8)

where [•](q) denotes the qth column of •.
Note that the above-mentioned equivalent signal vector

Kq,l of Eq. (7) contains only one non-zero element in the
qth position, hence the corresponding signals received at the
STSK receiver are free from inter-element interference (IEI).
This unique signal structure allows us to conceive the low-
complexity detector of [5], which is capable approaching the
optimal maximum likelihood (ML) detector’s performance.

Similarly to the nomenclature used in [1, 2, 5], we employ
the notation of ‘STSK(M,N, T,Q)’ in the rest of this paper,
where again, the space-time (ST) matrix Sq,l = slAq is
transmitted from the M AEs over T time slots.

B. Capacity of STSK

The classic continuous-input continuous-output memoryless
channel (CCMC) capacity of general MIMOs may be formu-
lated as [21]

CCCMC = E
[
log2 det

(
I+

HHH

N0

)]
, (9)

where E[•] is the expectation operation. Let us note that the
CCMC capacity is not affected by the specific constellations
employed, because it is based on the assumption of having a
Gaussian input signal. Hence, this ergodic capacity cannot be
used as the metric, which optimizes the constellation sl (l =
1, · · · ,L) of the STSK system.
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On the other hand, the STSK scheme’s DCMC capacity is
given by [1]

CDCMC =

1

T

B − 1

2B

2B∑
b=1

E

log2


2B∑
b′=1

exp
(
Ψ(b,b′)

)
 , (10)

where we have

Ψ(b,b′) =
−
∥∥H̄χ(Kg(b) −Kg(b′)) + V̄

∥∥2 + ∥∥V̄∥∥2
N0

, (11)

while g(b) represents a pair of (q, l) associated with the
index b (1 ≤ b ≤ 2B) of the input bits. In contrast to the
CCMC capacity, the DCMC capacity reflects the effects of
classic constellations, as suggested by Eq. (10). However, its
calculation requires the computationally expensive expectation
evaluation. This implies that the direct random-search based
maximization of the DCMC capacity is intractable for high-
dimensional STSK scenarios. To overcome this limitation, we
will derive the theoretical gradients of the DCMC capacity
CDCMC with respect to both the DCM χ and to the constella-
tion sl (l = 1, · · · ,L) later in Section III and in the Appendix.

C. Unified PEP Upper Bound

Let us define the PEP as P (S → S′), which indicates the
probability that a codeword S is erroneously decoded as S′.
According to the block-based system model of our STSK
scheme, which was formulated in Eq. (1), we arrive at the
corresponding PEP conditioned on the channel matrix H as
follows:

P (S → S′|H) = Pr (∥Y −HS′∥ − ∥Y −HS∥ < 0)

= Q

√∥H∆∥2

2N0

 , (12)

where we have ∆ = S − S′ and Q[•] represents the integral
form of the Q-function. Then, according to [22], the uncondi-
tional PEP may be obtained by averaging the conditional PEP
over the legitimate range of potential channel components as:

P (S → S′) =
1

π

∫ π/2

0

M∏
m=1

(
1 +

µm

4N0 sin
2 θ

)−N

dθ, (13)

where µm is the mth eigenvalue of ∆∆H . Having arrived at
the exact PEP expression, we can now compute the tight upper
bound on the average BER, by summing the PEP over all error
events corresponding to a given transmitted codeword S [21],
which is given by

Pe,bit(S) ≤
1

B

∑
S ̸=S′

d(S,S′)P (S → S′), (14)

where d(S,S′) represents the Hamming distance between S
and S′. Finally, averaging over all the legitimate 2B codewords

S, the upper bound of the averaged BER P̄e,bit is given by

P̄e,bit ≤ E

 1

B

∑
S ̸=S′

d(S,S′)P (S → S′)


=

1

B · 2B
∑
S

∑
S ̸=S′

d(S,S′)P (S → S′). (15)

Alternatively, Eq. (15) may be rewritten as

P̄e,bit ≤
1

B · 2B
B∑
i=1

1∑
b=0

∑
∀S(i,b)

∑
∀S(i,b̄)

P
(
S(i,b) → S(i,b̄)

)
, (16)

where S(i,b) represents STSK signals, having the ith bit (1 ≤
i ≤ B) value of b = {0, 1}, while b̄ is the inverse of the bit b.
Note that Eq. (16) assumes the absence of a priori information.

III. DCM AND CONSTELLATION OPTIMIZATION

In this section, we propose the joint optimization of the
dispersion-matrix and of the constellation sets.

Firstly, in order to have an initial set of [χ(1), s(1)], we
carry out a Monte Carlo (MC) simulation based random
search. To be specific, NMC number of (χ, s) sets are ran-
domly generated and then the set exhibiting the maximum
DCMC-capacity value is chosen as the initial set [χ(1), s(1)].

Based on [χ(1), s(1)], we maximize the STSK scheme’s
parameters with the aid of the SCG algorithm [23, 24] as
follows:

1) Initialization: Set a step size of µ > 0 and the
termination scaler of β > 0; given the initial
matrix of χ(1) and the constellation of s(1), set
D(1) = ∇χCDCMC(χ(1), s(1)) ∈ CMT×Q, G(1) =
∇sCDCMC(χ(1), s(1)) ∈ CL×1 and l = 1.

2) Loop: If ∥(∇χ +∇s)CDCMC(χ(l), s(l))∥ < β, goto
Stop.

χ(l + 1) = χ(l) + µD(l) (17)

[χ(l + 1)]q =
√
T ·

[χ(l + 1)]q∥∥∥[χ(l + 1)]q

∥∥∥ (q = 1, · · · , Q) (18)

s(l + 1) = s(l) + µG(l) (19)

s(l + 1) =
√
L · s(l + 1)

∥s(l + 1)∥
(20)

ϕl =
∥∇χCDCMC(χ(l + 1), s(l + 1))∥2

∥∇χCDCMC(χ(l), s(l + 1))∥2
(21)

D(l + 1) = ϕlD(l) +∇χCDCMC(χ(l + 1), s(l + 1)) (22)

ψl =
∥∇sCDCMC(χ(l + 1), s(l + 1))∥2

∥∇sCDCMC(χ(l), s(l + 1))∥2
(23)

G(l + 1) = ψlG(l) +∇sCDCMC(χ(l + 1), s(l + 1)) (24)

l = l + 1, goto Loop.
3) Stop: χ(l) and s(l) are the solution.

Here, ∥ • ∥ represents the Frobenius norm, while we have

∇χ =
[

∂
∂[χ]1

· · · ∂
∂[χ]Q

]
,

∇s =
[

∂
∂s1

· · · ∂
∂sL

]T
. (25)
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Fig. 1. Structure of the proposed IP-RSTSK transmitter and receiver.

In order to implement Eqs. (21)–(24) of the above-mentioned
SCG algorithm, the gradient calculations of ∇χCDCMC and
∇sCDCMC are needed. To avoid the computationally intensive
problem associated with their perturbation-based calculations,
we derive the theoretical values in the Appendix.

Since typically a significantly higher step size µ is used in
the conjugate gradient algorithm in comparison to the steepest
gradient algorithm, the convergence of the SCG is expected
to be more rapid. Additionally, as mentioned in [25], it is
beneficial to periodically reset the values of ϕl and ψl either to
zeros or to their negative counterparts for the sake of avoiding
convergence to a local optimum.

IV. EXIT-CHART AIDED IR-PSTSK DESIGN

In this section, we introduce our IR-PSTSK architecture,
which is composed of multiple STSK subcodes designed with
the aid of our optimization algorithm of Section III.

A. IR-PSTSK Transceiver

Fig. 1 shows the structure of our three-stage-concatenated
recursive systematic convolutional (RSC) coded and unity-
rate-convolutional (URC) coded IR-PSTSK structure, includ-
ing P different STSK component codes, each optimized by the
algorithm of Section III, in order to maximize the associated
DCMC capacity. We note that since IR-PSTSK consists of
linear combinations of STSK components codes, each compo-
nent code, optimized with the aid of our proposed algorithm
of Section III, contributes to the direct improvement of the
resultant IR-PSTSK scheme’s DCMC capacity.

The transmitter firstly channel-encodes the source informa-
tion bits by the RSC code, which are then interleaved by the
first interleaver Π1. The interleaved bits are divided into P
parallel bit sequences with the aid of a weighting coefficient
vector λ = [λ1, · · · , λP ], where we have the relationship
of

∑P
p=1 λp = 1. The pth bit-sequence is encoded by the

URC code and the encoded bits are interleaved again by the
interleaver Π2,p. The interleaved bits are then mapped to STSK
symbols. Finally, the P different STSK signal streams are
combined, which are transmitted by the M transmit antennas.

At the receiver of Fig. 1, the (2P + 1) soft-input soft-
output (SISO) decoders iteratively exchange their extrinsic

information. More specifically, Iin number of inner iterations
are carried out between each STSK decoder and the associated
URC decoder, per outer iteration. Therefore, the total number
of iterations becomes (Iin · Iout), where Iout is the number of
outer iterations.

Provided that the normalized transmission rate of each
STSK subcode is Rp (p = 1, · · · , P ), then we arrive at the
IR-PSTSK’s normalized transmission rate in the form of

R =
RCC∑P

p=1 λp/Rp

[bits/symbol], (26)

where RCC represents the rate of the RSC code.

B. EXIT Chart Based Design

In order to realize our near-capacity IR-PSTSK architecture,
we determine the weighting coefficients λ with the aid of
EXIT charts [13]. As shown in [20], the average EXIT function
of an irregular code having P component codes may be
approximated by their linear combinations. Hence, considering
the pth inner-code’s EXIT function at the SNR of interest ρ
to be Γp(IA, ρ), we arrive at the resultant IR-PSTSK’s inner-
EXIT function ΓIR−PSTSK(IA, ρ) in the form of

ΓIR−PSTSK(IA, ρ) =
P∑

p=1

λpΓp(IA, ρ). (27)

From Eq. (27), the weighting coefficients λ are designed with
the aid of exhaustive search, using the step size of τ , so as to
match the inner-code’s EXIT curve to the outer-code’s EXIT
curve as closely as possible.3

V. PERFORMANCE RESULTS

In this section, we provide our simulation results in order to
characterize the proposed SCG-based optimization algorithm
as well as the achievable performance of our IR-PSTSK
scheme.

Firstly, Fig. 2 shows the convergence characteristics of
our optimization algorithm proposed in Section III. More
specifically, we considered the following four STSK scenarios:
(L = 4)-STSK(4, 4, 4, 4), (L = 8)-STSK(4, 4, 1, 4), (L =
16)-STSK(4, 4, 3, 16) and (L = 16)-STSK(4, 4, 1, 8), which
were characterized at SNR = 0 dB. Observe in Fig. 2 that in
each scenario the DCMC capacity is monotonically increased
upon increasing the number of iterations. This is due to the
explicit benefit of employing the theoretical gradient values
derived in the Appendix. Note that ‘non-smooth’ points of
the convergence curves correspond to the ones, where the
values of ϕl and ψl were reset to zero in order to circumvent
convergence to a local optimum, as described in Section
III. Additionally, the initial capacity points of Fig. 2, which
were designed with the aid of MC simulations, correspond
to the conventional performance results. Hence, our iterative

3The total search-space of our IR-PSTSK scheme’s exhaustive search is∏P
i=1(α − i + 1), where α denotes the number of quantization levels of

each weighting coefficient 0 ≤ λi ≤ 1.The detailed optimization process of
weighting coefficients can also be found in Chapter 7 of [13].
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Fig. 2. Convergence of the proposed simplified gradient algorithm aided joint dispersion-matrix and constellation optimization at SNR = 0 dB.

optimization schemes exhibited clear performance advantages
over the conventional random-search algorithm.4

Additionally, in Fig. 3 we investigated the effect of the
step size µ on the convergence speed, while varying µ from
0.1 to 5. Here, we considered the (L = 8)-STSK(2, 2, 2, 8)
arrangement. It can be seen for Fig. 3 that regardless of
the value of µ, each SCG optimization converged to a cost-
function value of 2.62, while exhibiting different convergence
speeds. Similarly, our additional extensive simulations showed
that the converged cost-function value remains unaffected by
the choice of the step size µ.

Next, we designed our IR-PSTSK scheme by considering
P = 8 different STSK component codes, which are listed
in Table I. To be specific, the component-code set exhibits
different transmission rates, ranging from R = 1 to 8
bits/symbol. Then, the weighting coefficients λ were designed
with the aid of EXIT charts as well as using an exhaustive
search by employing the step size of τ = 0.01. More
specifically, the gap area between the IR-PSTSK scheme’s
inner code’s EXIT curve and the half-rate RSC(2.3.2) outer
code’s EXIT curve was minimized at the SNR of −4.8 dB, as
shown in Fig. 4. Here, the area between the inner and outer

4Here, we invoked Monte Carlo simulations in order to attain the initial
condition of our SCG-based optimization. However, several other random
search algorithms, such as genetic algorithms (GA), may be readily employed
for calculating good initial parameters in a more efficient manner.
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Fig. 3. Comparisons of the effects of the step size µ on the convergence be-
havior, while considering the 8-APSK aided STSK(2, 2, 2, 8) scheme recorded
at SNR = 4 dB.

codes’ EXIT curves was as low as 0.0144 and the weighting
coefficients λ of the P = 8 components were given by
λ = [0.08 0.54 0.05 0.00 0.04 0.13 0.00 0.16]. The inner code
rate of IR-PSTSK and the resultant normalized transmission
rate were 1.92 and 0.96 bits/symbol, respectively. In this
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TABLE I
A SET OF STSK COMPONENT CODES (P = 8) FOR M = N = 4

TRANSMIT AND RECEIVE ANTENNAS

Index M N T Q L D Rate Weight λi

#1 4 4 4 4 4 16 1.0 0.08
#2 4 4 4 8 8 16 1.5 0.54
#3 4 4 4 16 16 16 2.0 0.05
#4 4 4 3 16 16 12 2.7 0.00
#5 4 4 2 16 16 8 4.0 0.04
#6 4 4 1 4 8 4 5.0 0.13
#7 4 4 1 8 16 4 7.0 0.00
#8 4 4 1 16 16 4 8.0 0.16

IA ( IE)
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 (

 I
A

)

0.0
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0.8
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Fig. 4. EXIT charts of the proposed (M,N )=(4, 4)-antenna aided IR-PSTSK
scheme at SNR = −4.8 dB, where we considered the half-rate RSC(2,1,2)
code.

paper, we assumed the employment of the high-complexity
MAP algorithm for the STSK detector at the receiver. On the
other hand, it is possible to employ the reduced-complexity
STSK detector of [5], by imposing additional constraint of the
symmetric property over I- and Q-axes on the optimization
of the APSK constellations.

Considering that a narrow open tunnel appeared between the
two EXIT curves and that the inner code’s EXIT curve reached
the point of perfect convergence at (IA, IE) = (1, 1), it is
predicted that a vanishingly low BER may be achieved with
the aid of a sufficiently high number of iterations. Similarly,
we may be able to optimize our near-capacity IR-PSTSK
scheme over a wide range of SNRs. Additionally, we note
that It is also readily possible to employ irregular channel
coding (IRCC) scheme with our IR-PSTSK scheme, similarly
to [20], which enables further flexible matching of inner and
outer EXIT curves. However, the performance improvement is
considered to be marginal for the scenario of Fig. 4, since the
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Fig. 5. Achievable BER performance of our IR-PSTSK scheme having
(M,N) = (4, 4) antenna elements, compared with the G4 OSTBC and
SSK schemes, employing the three-stage RSC-coded and URC-precoded
arrangement of Fig. 1. Here, the BER curves of the uncoded counterpart
of each scheme was also calculated, while plotting the associated theoretical
BER bound of our uncoded IR-PSTSK scheme.

gap area is already significantly small.

In order to provide further insights, in Fig. 5 the BER curve
of our IR-PSTSK of Fig. 4 was compared to those of other
MIMO benchmark schemes, such as the 16-QAM aided G4-
orthogonal space-time block coding (OSTBC) scheme [26]
and the SSK scheme [6], each exhibiting the normalized
transmission rate of 1 bits/symbol. Here, a low-complexity
symbol-based SISO MAP detector [27] was invoked for our
IR-PSTSK and SSK schemes, while the optimal SISO MAP
detector [13] was used for the OSTBC scheme. The maximum
number of inner and outer iterations was set to Iin = 70
and Iout = 2, respectively and the interleaver length was 200
000 bits per frame. For comparison, we also characterized the
uncoded counterparts of the above-mentioned schemes, where
the optimal ML detector was employed.5Observe in Fig. 5 that
in channel-encoded scenarios, the proposed IR-PSTSK scheme
attained an infinitesimally low BER at SNR = −4.7 dB as
expected from the EXIT charts of Fig. 4, which outperformed
the other two channel-encoded benchmarkers, exhibiting BER
cliffs at SNRs of −3.7 dB and −2.7 dB, respectively. By
contrast, in uncoded scenarios each benchmark scheme, i.e.
the uncoded OSTBC and SSK scheme, exhibited a better
performance than our IR-PSTSK scheme. This suggests that
the classic STCs do not provide a near-capacity performance
in practical channel-encoded scenarios, while our IR-PSTSK
scheme has the explicit benefit of facilitating a flexible EXIT-
chart-based system design.

5In order to validate the calculated BERs we also plotted the theoretical
bound, which was derived in Section II-C. More specifically, by considering
the ith STSK subcode P̄i (i = 1, · · · , P ) of Eq. (15), the theoretical BER
bound of our IR-PSTSK scheme is given by P̄IR−PSTSK =

∑P
i=1 λiP̄i.
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VI. CONCLUSIONS

In this paper, we proposed the joint optimization of the
STSK dispersion matrices and constellations, which was in-
voked for designing a near-capacity IR-PSTSK scheme. More
specifically, our derivation of the theoretical gradient of the
DCMC capacity facilitates an efficient SCG-algorithm based
optimization. Furthermore, the IR-PSTSK scheme, which is
constituted by the STSK subcodes optimized with the aid
of our algorithm, was found to attain a near-capacity perfor-
mance.

APPENDIX
GRADIENT DERIVATION

In this appendix, we derive the theoretical gradient matrix of
the STSK scheme’s DCMC capacity ∇χCDCMC ∈ CMT×Q

with respect to the equivalent DCM χ, where we define a
(MT × Q)-element gradient matrix of ∇χ = [∇1, · · · ,∇Q]
and ∇q = ∂/∂[χ]q . Then, the qth vector of the gradient matrix
∇qCDCMC ∈ CMT×1 may be written as

∇qCDCMC =
∂CDCMC

∂[χ]q
(28)

= − 1

T · 2B
∇q

 2B∑
b=1

E [f(b)]

 (29)

with the relationship of

f(b) = log2

 2B∑
b′=1

exp
(
Ψ(b,b′)

) . (30)

Here, let us assume that the expectation operation is simplified
to the average operation. Then, Eq. (29) may be rewritten as

∇qCDCMC = − 1

T · 2B
E

 2B∑
b=1

∇qf(b)

 . (31)

Furthermore, ∇qf(b) of Eq. (31) can be expressed as

∇qf(b) = ∇q log2

 2B∑
b′=1

exp
(
Ψ(b,b′)

) (32)

=
∇q

[∑2B

b′=1 exp
(
Ψ(b,b′)

)]
(ln 2)

∑2B

b′=1 exp
(
Ψ(b,b′)

) (33)

=

∑2B

b′=1 exp
(
Ψ(b,b′)

)
∇qΨ

(b,b′)

(ln 2)
∑2B

b′=1 exp
(
Ψ(b,b′)

) . (34)

Moreover, ∇qΨ
(b,b′) of Eq. (34) may be calculated from

Eq. (11) as follows:

∇qΨ
(b,b′) = − 1

N0
∇q

{
H̄χ(Kg(b) −Kg(b′)) + V̄

}H

×
{
H̄χ(Kg(b) −Kg(b′)) + V̄

}
(35)

= − 2

N0

[
K∗

g(b) −K∗
g(b′)

]
(q)

H̄H

×
{
H̄χ(Kg(b) −Kg(b′)) + V̄

}
, (36)

where [•](q) denotes the qth column. Finally, we arrive at
∇χCDCMC = [∇1CDCMC, · · · ,∇QCDCMC] from Eqs. (31),
(34) and (36).

In order to expound a little further, the derivation of the
above-mentioned gradient matrix ∇χCDCMC allows us to
significantly reduce the computational complexity, under the
assumption of the SCG algorithm of Section III. More specif-
ically, the perturbation-based approach requires (2MTQ+1)
number of DCMC-capacity calculations in order to obtain a
single gradient matrix ∇χCDCMC, while only the complexity
equivalent to a single DCMC-capacity calculation is necessary
for our theoretical gradient matrix. 6

Similarly to Eqs. (31)–(36), we may also be able to derive
the gradient vector of symbol constellations ∇sCDCMC =
[∂/∂s1, · · · , ∂/∂sL]T CDCMC ∈ CL×1, which is formulated
as

∇sCDCMC =

− 1

T · 2B
E

 2B∑
b=1

∑2B

b′=1 exp
(
Ψ(b,b′)

)
∇sΨ

(b,b′)

(ln 2)
∑2B

b′=1 exp
(
Ψ(b,b′)

)
 , (37)

where we have the relationship of

∂Ψ(b,b′)

∂sl̃
= − 2

N0

(
δ(l̃,l)H [λ](q) − δ(l̃,l′)H [λ](q′)

)H

×
{
H̄χ(Kq,l −Kq′,l′) + V̄

}
(1 ≤ l̃ ≤ L),

(38)

δ(l1,l2) =

{
1 (l1 = l2)
0 (l1 ̸= l2)

, (39)

while assuming that g(b) and g(b′) correspond to the associ-
ated sets of (q, l) and (q′, l′), respectively.
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